
Dominic Jesse

9 December 2009

For the final project in Discrete Mathematics, I created an “educational game”

based on several concepts from the textbook, using object-oriented programming in C++

to both implement the game and provide a template to create more such games in the

future.

Program Concept

The first chapter of Susanna Epp’s Discrete Mathematics with Application, 3
rd

Ed. covers the “logic of compound statements.” Section 1.3 covers how to establish

arguments as valid/invalid, not by using truth tables (as in earlier sections), but by using

basic rules of inference, such as modus ponens, modus tollens, elimination, etc.

This section’s exercise set (pp. 41-2) uses several entertaining methods to get

students to apply these rules, all forms of logic puzzles. For example, problem 37

presents five statements, then asks the student to find the location of a “pirate treasure.”

Problem 39 uses a traditional “murder mystery” approach, where six statements, plus

logical rules, will yield the identity of the murderer.

General Overview and Program Concept

To design the program, I started with Problem 37 on page 42. The story behind

this problem involves the discovery of a cryptic set of clues left behind by a pirate,

leading to a hidden treasure. The five clues are as follows:

a. If this house is next to a lake, then the treasure is not in the kitchen.

b. If the tree in the front yard is an elm, then the treasure is in the kitchen.

c. This house is next to a lake.

 Jesse 2

d. The tree in the front yard is an elm or the treasure is buried under the flagpole.

e. If the tree in the back yard is an oak, then the treasure is in the garage.

This puzzle is a simple one. To solve it on paper, the first step is to break up the

compound statements into simple statements, assigning each simple statement to an

abstract symbol:

A = This house is next to a lake

B = The treasure is in the kitchen

C = The tree in the front yard is an elm

D = The tree in the back yard is an oak

E = The treasure is buried under the flagpole

F = The treasure is in the garage

 With the simple statements defined, one simply rewrites the five clues using these

abstract symbols and logical operators:

a. A  ~B

b. C  B

c. A

d. C  E

e. D  F

Now that the statements are reduced, the problem is solved by establishing the

validity of one of the statements B, E, or F, which reveal where the treasure is. The

following steps are taken:

1. Statements a and c result in ~B, using modus pollens (A  ~B, A, ~B)

 Jesse 3

2. The result of Step 1 combines with Statement b, resulting in ~C, using

modus tollens (~B, C  B, ~C)

3. The result of Step 2 combines with Statement d, resulting in D, using

method of elimination (~C, C  E, E)

4. The problem is solved when the validity of E is proven (the treasure is

buried under the flagpole).

To turn this into an interactive program, one can conceive of a “logical

machine,” or a program that takes three inputs:

i. The first statement

ii. The second statement

iii. The logical method used to evaluate the two statements and

produce a new statement.

It then performs the following operations:

i. Determine that the two statements are compatible

ii. Determine if the logical method is compatible with the two statements

and produces the following output:

i. A new statement based on the two operations

To prevent “clutter,” the program should also, once a new statement is created,

eliminate the two statements used to create it.

Limits of Grammar and Logic

Ideally, the best way to design an object-oriented program to implement such a

game would be to:

a. Create an object representing each “basic statement”

 Jesse 4

b. Have each statement set as true, false, or unknown

c. After the user enters needed data, have existing programming logical

operators determine the output

Unfortunately, while this method is the most elegant, it has several drawbacks that

made it impractical.

The first problem is that of grammar. If the output was limited to nothing but

abstract symbols, such as A, B, and C, grammar would not be a problem. However, the

program needs to output the statements in plain English. Take, for instance, the negated

statements that come up, ~B and ~C. As defined:

B = The treasure is in the kitchen

C = The tree in the front yard is an elm

In plain English, the negations translate to:

~B = The treasure is not in the kitchen

~C = The tree in the front yard is not an elm

Using logical operators, though, they read:

~B = It is not the case that the treasure is in the kitchen

~C = It is not the case that the tree in the front yard is an elm

 In theory, the above two statements are English sentences. However, they are

awkward, and while grammatically correct, are not well-written, nor would they be

considered understandable.
1
 Moreover, This only addresses the problems of negating a

simple statement; there are still the grammatical rules (including commas, upper- and

1
 It might be possible to program, within each object, the rules for it to negate itself. For example, when

negating the B and C, you might program the rule that if negated, you add the word “not” in front of the

verb “is.” However, not all statements negate that easily. Under these rules, the negation of the statement

 Jesse 5

lower-casing) involved when one uses conjunction, disjunction, etc. between simple

statements.

The second problem is that of logical operation. C++ has logical operators for or,

and, and negation (||, &&, !). When dealing with if-then, however, it requires code

(if[EXPRESSION]…then…else). It lacks (to my knowledge, at an intermediate

programming level) specific rules for other inference rules.
2

For these reasons, when using C++ OOP, I used an entirely different approach.

Object Design

When creating the objects for the program, I decided to create an object for every

statement necessary for the solution of the puzzle, whether or not the statement was

simple or compound. Each object would hold a string indicating the clue it held, as well

as information on the other objects it can be combined with, and the method used to make

this combination work.

Using this method, it is necessary to define every object as soon as the program

executes, even ones that the user has not “created” yet. To address this, each object is

considered “available” or “not available.” An clue-object that is “available” is visible to

the user, in that it prints out its clue. Also, an “available” clue can be called by the user to

be combined with other objects and methods.

“The man is alive” is “The man is not alive.” In plain English, though, the better-written negation would be

“The man is dead.” While such a system is possible, it is too large for this project.

2
 It is, of course, possible to add functions to C++ that mimic these operations. Earlier in this course, I

considered using a library that added PROLOG functions that would allow additional inference rules.

However, this effectively would have required learning a new language, which was beyond the scope of

this project.

Also, Quine demonstrated that almost all logical statements could be reduced to two symbols – conjunction

and negation. For example, according to Quinean logic, the statement A  B could be expressed as ~(A ^

~B). However, learning a whole new method of logic is also beyond the scope of this course.

 Jesse 6

At the beginning of every “turn,” the program goes through the list of clue-

objects. If the clue is “available,” it is printed; if not, it remains invisible. The user is then

prompted for three integer inputs: the first two specify the clues the user wants to

evaluate, and the third represents the logical method used to combine those clues. If the

user gives a correct combination, a new clue becomes visible. If the user enters the

correct combination to make the final clue available, the player wins.

Using this framework, one can create an abstract data type (ADT) as follows:

dataTypeName

 clueType

domain

 Each clueType object contains:

1. A string holding the text of the clue

2. A bool value stating whether the clue is currently accessible or

not

3. An integer representing the class instance’s unique identifier

4. An integer representing the unique identifier of the other class

instance with which it can be combined

5. An integer specifying the correct logical method necessary to

combine the clue with the other

6. An integer representing the unique identifier of the clue that

becomes available after a successful combination

7. A bool value stating if the particular object instance wins the

game if visible

operations

1. Print the clue (if the object is available)

2. Toggle the object’s availability

3. Check to see whether a particular combination with another

object is true (based on domains 2-6 above)

4. Check to see if the object’s status wins the game (meaning it’s

available, and if available, is the final clue)

5. Fill all of an object instance’s data members

The ADT can be translated into the following Unified Modeling Language

(UML) diagram (the clue is split into two strings to allow better display on the screen):

 Jesse 7

clueType

-clue1: string

-clue2: string

-access: bool

-ID: int

-partner: int

-method: int

-reveal: int

-winner: bool

+printClue(): void

+toggleAccess(): void

+checkConnection(clueType&, int): int

+checkAvailability(): bool

+checkWinner(): bool

+fillClue(string, string, bool, int, int, int,

bool)

With the object defined, the below pseudocode can be used to define the object

operations.

PRINTCLUE

 IF (access = TRUE) THEN

 PRINT clue

 ENDIF

END

TOGGLEACCESS

 IF (access = TRUE) THEN

 ACCESS := FALSE

 ELSE

 ACCESS := TRUE

 ENDIF

END

CHECKCONNECTION

 PARAMETERS clueType other, integer logicalMethod

 IF (partner = other.ID &&

 ID = other.partner &&

 method = other.method = logicalMethod &&

 access = other.access = TRUE) THEN

 TOGGLEACCESS current clueType object

 TOGGLEACCESS clueType object other

 Jesse 8

 PRINT affirmative message

 RETURN integer reveal

 ELSE

 PRINT negative message

 RETURN –1

 ENDIF

END

NOTE: The checkConnection member function returns an integer equal to the ID of the

clue that is revealed on successfully combining the right elements. Back in the main

program loop, one uses the toggleAccess member function in conjunction with this

integer in order to make the clue available and visible.

CHECKAVAILABILITY

 IF (access = TRUE) THEN

 RETURN TRUE

 ELSE

 RETURN FALSE

 ENDIF

END

CHECKWINNER

 IF (winner = TRUE && access = TRUE) THEN

 RETURN TRUE

 ELSE

 RETURN FALSE

END ENDIF

STOP

FILLCLUE

ASSIGN the below eight parameters to an object instance

 string clue1

 string clue2

 bool access

 int ID

 int partner

 int method

 int reveal

bool winner

END

Main Program Design

With the objects defined in the previous section, all that’s needed is a main game

program loop (a type of game engine), and a function to fill all the objects of the game.

 Jesse 9

The pseudocode for the primary game loop is as follows:

START

DECLARE bool win := FALSE

DOWHILE (win = FALSE)

 PRINT all clueObjects whose availability is TRUE

 PRINT definitions of logical operators with associated integer

 PROMPT for integer clue1

 PROMPT for integer clue2

 PROMPT for integer logicMethod

CALL CHECKCONNECTION method using objects identified in clue1

and clue2, using logical method identified in logicMethod

IF (CHECKCONNECTION returns any integer besides –1) THEN

 CALL TOGGLEACCESS for integer ID returned

ENDIF

CALL CHECKWINNER method on all objects

IF (any object returns TRUE from CHECKWINNER) THEN

 DECLARE bool win := TRUE

 PRINT victory message

ENDIF

ENDWHILE

STOP

The only other major operation is to fill each object with the data

appropriate for the “Pirate Treasure” operation. This is simply done using the fillClue

function. Appendix A to this report contains the data entered for this game.

Application to other Logical Puzzles

The above program, when compiled as a Win32 console program, in C++,

using Microsoft Visual Studio .NET 2003, worked correctly, and the executable program

is attached, as well as the C++ code (Appendix B).

If the above framework is correct, then the clueType object and methods

should be applicable to many other logic puzzles. The only changes required are:

1. The clueType object instances should be initialized with different data

 Jesse 10

2. The array of clue objects will be of a different size, as will any number

in the main loop that reflects the number of objects

3. If the new problem uses different logical methods, they must be

redefined in the main loop

To test this, I used Problem 39 in textbook Section 1.3, on page 42. This

logic puzzle is a “murder mystery” problem, with the user manipulating clues to discover

who killed “Lord Hazelton.” Perusing the problem easily creates the following basic

statements:

A = Lord Hazelton was killed by a blow on the head with a brass

candlestick

B = Lady Hazelton was in the dining room at the time of the murder

C = The maid, Sara, was in the dining room at the time of the murder

D = The cook was in the kitchen at the time of the murder

E = The butler killed Lord Hazleton with a fatal dose of strychnine

F = The chauffer killed Lord Hazelton

G = The wine steward killed Lord Hazelton

This in turn can be converted into a table of object data, which is included

in Appendix C. The executable file, MurderCase, is attached as well, demonstrating the

applicability of the underlying game engine

Future Developments

Although I dismissed the idea earlier, more advanced C++ techniques may

offer a simpler solution than of creating an object for every possible outcome prior to

program execution. One possibility would be to allow the objects to actually create other

objects (perhaps objects of a derived class) based on successful input. Using such

induction rules would greatly reduce the code needed, and allow much larger puzzles.

By far, though, the greatest improvement would be a major improvement

of the programs graphics and user interface. The Win32 console is only good for testing

 Jesse 11

the engine. To make an application end users can enjoy would involve creating a standard

user interface screen (instead of scrolling text), as well better input methods. For

example, an interface where the user can drag-and-drop clues onto a field for evaluation

would be much better than entering integers.

As far as useful applications are concerned, the program, as it is currently

written, would make an excellent educational game for students beginning to study logic.

If the game did not require the precise name of the logical method for each operation, the

program may also be useful as a puzzle game for general users. It can also be embedded

in larger games as a “mini-game” to add a puzzle to the gameplay.

 Jesse 12

Works Cited

Epp, Susanna. Discrete Mathematics with Applications, 3
rd

 Ed. Belmont, Calif. –

Brooks/Cole-Thomson Learning, 2004. Section 1-3, pp. 29-43.

Malik, D.S. C++ Programming: From Program Analysis to Program Design, 4
th

 Ed.

Boston: Course Technology, 2009.

Quine, Willard Van Orman. Elementary Logic, Revised Ed.. Cambridge, Mass. : Harvard

University Press, 1980. Section I-7, “If,” pp. 17-20.

APPENDICES:

Appendix 1 – Object Data Table for Pirate Treasure clues (Excel worksheet)

Appendix 2 – C++ Code for Pirate Treasure program (MS Word document)

Appendix 3 – Object Data Table for Murder Case clues (Excel worksheet)

ALSO ATTACHED are stand-alone, executable files for each game, PirateTreasure.exe

and MurderCase.exe.

